首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6771篇
  免费   706篇
  国内免费   3篇
  2023年   26篇
  2022年   27篇
  2021年   176篇
  2020年   83篇
  2019年   125篇
  2018年   155篇
  2017年   137篇
  2016年   202篇
  2015年   366篇
  2014年   379篇
  2013年   468篇
  2012年   629篇
  2011年   610篇
  2010年   397篇
  2009年   392篇
  2008年   466篇
  2007年   479篇
  2006年   430篇
  2005年   384篇
  2004年   400篇
  2003年   311篇
  2002年   286篇
  2001年   50篇
  2000年   30篇
  1999年   49篇
  1998年   71篇
  1997年   42篇
  1996年   26篇
  1995年   25篇
  1994年   27篇
  1993年   22篇
  1992年   17篇
  1991年   10篇
  1990年   16篇
  1989年   20篇
  1988年   12篇
  1987年   14篇
  1986年   13篇
  1985年   12篇
  1984年   13篇
  1983年   12篇
  1982年   12篇
  1981年   12篇
  1980年   3篇
  1979年   3篇
  1977年   6篇
  1975年   2篇
  1974年   11篇
  1973年   4篇
  1967年   3篇
排序方式: 共有7480条查询结果,搜索用时 125 毫秒
71.
72.
Gastrointestinal (GI) helminths are common parasites of humans, wildlife, and livestock, causing chronic infections. In humans and wildlife, poor nutrition or limited resources can compromise an individual''s immune response, predisposing them to higher helminth burdens. This relationship has been tested in laboratory models by investigating infection outcomes following reductions of specific nutrients. However, much less is known about how diet supplementation can impact susceptibility to infection, acquisition of immunity, and drug efficacy in natural host–helminth systems. We experimentally supplemented the diet of wood mice (Apodemus sylvaticus) with high-quality nutrition and measured resistance to the common GI nematode Heligmosomoides polygyrus. To test whether diet can enhance immunity to reinfection, we also administered anthelmintic treatment in both natural and captive populations. Supplemented wood mice were more resistant to H. polygyrus infection, cleared worms more efficiently after treatment, avoided a post-treatment infection rebound, produced stronger general and parasite-specific antibody responses, and maintained better body condition. In addition, when applied in conjunction with anthelmintic treatment, supplemented nutrition significantly reduced H. polygyrus transmission potential. These results show the rapid and extensive benefits of a well-balanced diet and have important implications for both disease control and wildlife health under changing environmental conditions.  相似文献   
73.
74.
75.
Neuronal extracellular vesicles (EVs) play important roles in intercellular communication and pathogenic protein propagation in neurological disease. However, it remains unclear how cargoes are selectively packaged into neuronal EVs. Here, we show that loss of the endosomal retromer complex leads to accumulation of EV cargoes including amyloid precursor protein (APP), synaptotagmin-4 (Syt4), and neuroglian (Nrg) at Drosophila motor neuron presynaptic terminals, resulting in increased release of these cargoes in EVs. By systematically exploring known retromer-dependent trafficking mechanisms, we show that EV regulation is separable from several previously identified roles of neuronal retromer. Conversely, mutations in rab11 and rab4, regulators of endosome-plasma membrane recycling, cause reduced EV cargo levels, and rab11 suppresses cargo accumulation in retromer mutants. Thus, EV traffic reflects a balance between Rab4/Rab11 recycling and retromer-dependent removal from EV precursor compartments. Our data shed light on previous studies implicating Rab11 and retromer in competing pathways in Alzheimer’s disease, and suggest that misregulated EV traffic may be an underlying defect.  相似文献   
76.
77.
Vertebrate Hedgehog signals are transduced through the primary cilium, a specialized lipid microdomain that is required for Smoothened activation. Cilia-associated sterol and oxysterol lipids bind to Smoothened to activate the Hedgehog pathway, but how ciliary lipids are regulated is incompletely understood. Here we identified DHCR7, an enzyme that produces cholesterol, activates the Hedgehog pathway, and localizes near the ciliary base. We found that Hedgehog stimulation negatively regulates DHCR7 activity and removes DHCR7 from the ciliary microenvironment, suggesting that DHCR7 primes cilia for Hedgehog pathway activation. In contrast, we found that Hedgehog stimulation positively regulates the oxysterol synthase CYP7A1, which accumulates near the ciliary base and produces oxysterols that promote Hedgehog signaling in response to pathway activation. Our results reveal that enzymes involved in lipid biosynthesis in the ciliary microenvironment promote Hedgehog signaling, shedding light on how ciliary lipids are established and regulated to transduce Hedgehog signals.  相似文献   
78.
Essential fish habitats (EFHs) are critical for fish life-history events, including spawning, breeding, feeding or growth. This study provides evidence of EFHs for the critically endangered flapper skate (Dipturus intermedius) in the waters around the Orkney Isles, Scotland, based on citizen-science observation data. The habitats of potential egg-laying sites were parametrised as >20 m depth, with boulders or exposed bedrock, in moderate current flow (0.3–2.8 knots) with low sedimentation. This information provides a significant contribution to the understanding of EFHs for flapper skate.  相似文献   
79.
Background aimsCorneal inflammation after alkali burns often results in vision loss due to corneal opacification and neovascularization. Mesenchymal stem cells (MSCs) and their secreted factors (secretome) have been studied for their anti-inflammatory and anti-angiogenic properties with encouraging results. However, topical instillation of MSCs or their secretome is often accompanied by issues related to delivery or rapid washout. Polyethylene glycol (PEG) and collagen are well-known biomaterials used extensively in scaffolds for tissue engineering. To effectively suppress alkaline burn-induced corneal injury, the authors proposed encapsulating MSCs within collagen gels cross-linked with multi-functional PEG-succinimidyl esters as a means to deliver the secretome of immobilized MSCs.MethodsHuman MSCs were added to a neutralized collagen solution and mixed with a solution of four-arm PEG-N-hydroxysuccinimide. An ex vivo organ culture was conducted using rabbit corneas injured by alkali burn. MSCs were encapsulated within PEG-collagen hydrogels and injected onto the wounded cornea immediately following alkali burn and washing. Photographs of the ocular surface were taken over a period of 7 days after the alkali burn and processed for immunohistochemical evaluation. Samples were split into three groups: injury without treatment, MSCs alone, and MSCs encapsulated within PEG-collagen hydrogels.ResultsAll corneas in ex vivo organ culture lost their transparency immediately after alkali burn, and only the groups treated with MSCs and MSCs encapsulated within PEG-collagen hydrogels recovered some transparency after 7 days. Immunohistochemical analysis revealed increased expression of vimentin in the anterior corneal stroma of the group without treatment indicative of fibrotic healing, whereas less stromal vimentin was detected in the group containing MSCs encapsulated within the PEG-collagen hydrogels.ConclusionsPEG-collagen hydrogels enable the encapsulation of viable MSCs capable of releasing secreted factors onto the ocular surface. Encapsulating MSCs within PEG-collagen hydrogels may be a promising method for delivering their therapeutic benefits in cases of ocular inflammatory diseases, such as alkali burn injuries.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号